
Journal of Engineering Mathematics, Vol. 15, No. 2, April 1981 
01981 Sijthoff & Noordhoff International Publishers - Alphen aan den Rijn 
Printed in the Netherlands 

81 

The fluid-filled cylindrical membrane container 

C.-Y. WANG 

Department o f  Mathematics, Michigan State University, East Lansing, Michigan, USA 

and 

L. T. WATSON 

Department o f  Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 
USA. 

(Received April 22, 1980) 

SUMMARY 
The static shape of a fluid-filled membrane cylinder can be described by a set of nonlinear differential equa- 
tions. These equations depend on a nondimensional parameter/3 representing the relative importance between 
pressure and the gravity force. The solution is found by three methods: similarity solution for small/3, asymp- 
totic solution for large/3, and numerical integration. 

1. Introduction and formulation 

Fabric membrane containers are desirable in the storage and transportation of liquids due to 

their low cost and their ease of set up and dismantability. Long cylindrical flexible containers, 

filled with sand or water, have also been used as dams in flood control [1, 2]. The present paper 

is a theoretical study of such fluid-filled membrane containers. 

r 
h' 

Figure 1. 
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The coordinate axes. 

Fig. 1 shows the cross section of a fluid-filled cylinder resting on the ground. We shall assume 

the membrane fabric is of negligible density, inextensible, and has a fixed total perimeter of 

length L. Fluid of density p can be pumped through a hole on the bot tom with pressure Po- 
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The local curvature at any point is directly proportional to the local pressure difference and in- 
versely proportional to membrane tension. Using the coordinate axes shown, the equations gov- 

erning the shape o f  the cylinder are 

dO Po-Pa-PgY '  
curvature - ds ~ - T ' (1) 

dx' dy'  
ds' - cos 0, ds' = sin 0 (2) 

where Pa is the ambient pressure, g is the gravitational acceleration, T is the tensile force experi- 
enced by the membrane, s' is the arc length from the origin, and 0 is the local angle of  inclination. 
We shall normalize all lengths by L and drop primes. The governing equations become 

dO 1 
- ( /3-y) ,  (3)  

Ot ds 

dx  dy 
- cos 0, - sin 0 (4) 

ds ds 

where/3 = (P0 - Pa)/Pg L and a -= T/og L 2 are non-dimensional parameters. Since T is constant, 

the boundary conditions are 

at s = 0 :  x = y = 0 = 0 ,  (5) 

at s = l - c :  x = - c ,  y = 0 ,  0=2r r ,  (6) 

where c is the fractional length o f  perimeter which touches the ground. Given/3, the unknowns 

are a, c, x , y ,  O. 

If  we differentiate (3) with respect to s, multiply by dO/ds and integrate twice, we obtain 

s =  - - E  ,0  . 
x / a + c o s 0  a + l  ' 2 a + l  

(7) 

Here a is an integration constant and E is the elliptic integral of  the first kind. However, it is 
almost impossible to complete the solution analytically from (4)-(7), since the unknowns 0 and 

a are implicit in the elliptic functions. In what follows we shall introduce several other methods 
in order to give more insight into the character o f  the solution. 

2. The similarity so lut ion  when/3  is small 

This is the case when the membrane cylinder contains very little liquid. Most of  the cylinder 
surface has zero slope except at the sides where s ~ 0 and s ~ 1/2. We introduce a similar vari- 
able ~', 

- s / , / g .  (8) 
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Eq (3), after differentiation, becomes 

d20 
- - s in  O. (9) 

d~-2 

This can be integrated to yield 

dO 
- X/2(I + cos O) (10) 

df 

where the constant o f  integration has been determined by 

dO 
~'--.~, O ~ r r , - - ~  ~ 0 .  (11) 

a g  

When 0 = 0 ,  y = 0 ,  Eqs (3), (10) give 

a =/32/4 <<  1. (12) 

The exact solution to (10), (4) is 

O + T r  
s = ~" = In tan ( - - ~ ) ,  (13) 

,/g 
0 . O + r r  

x = 2 sin ~ - In tan t - - - ~  ), (14) 

y 0 
= 2 - 2 cos - .  (15) 

2 

We see that when/3 is small, the shape o f  the cylinder (14), (1 5) is similar, i.e. directly propor- 

tional to 13 (See Fig. 2). From (14), 

0 
x = - s  + 2 VCasin ~ 0=Tr = - s  + 2 V ~ .  (16) 

0=Tr 

_.Z_ 

- 3  - 2  -1 0 

Figure 2. The similarity profile for small ~. 
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We find 

1 1 
1 [ 1 - 2 ( x  + s)l = -2- - 2 V'-d= ~ - / 3 .  (17) C = "~ 0=rr 

Let w and h denote the normalized width and height of  the membrane tube. Then 

1 37r 
w = c  + 2x  I . = - + ( V ~ -  1 - In tan --~-)/3, (18) 

,0 = 7  2 

h = y  0= = 3 .  (19) 

The volume per unit length of  cylinder V' can be computed as follows: 

V' (Po--Pa)C 
V =- - -  - =/3c =/3/2 - /32.  (20) 

L 2 pgL  

3 .  A s y m p t o t i c  s o l u t i o n  w h e n / 3  is  l a r g e  

Let 3 --- 1/e where e < <  1. This is the case when the membrane cylinder is so pressurized that  

the cross-sectional shape is almost a circle. Let us perturb about this limiting case by setting 

0 = 27rs + e 01 (s) + e 2 02 (s) + . . . ,  (21) 

1 
x = - -  sin 2rrs + e x l  (s) + e2x2(s)  + . . . .  (22) 

2rr 

1 
y = ~ -  (1 - cos 27rs) + e y l  (s) + e2y2 (s) + . . . .  (23) 

3 2 n + e A l  +e2A2 + (24) 

c = O + e C l  +e2c2 + . . . .  (25) 

Here the gauge functions (e "n) are determined uniquely from (3). Substi tution of (21)- (25) in to  

(3)-(5) yields the following successive equations: 

dO1 

ds 

dO2 

ds 

dx2 

ds 

dXl dYl 
=A1 +cos  21rs -  1, - -01 sin 2 r r s , -  =01 cos 2rrs, (26) 

ds ds 

h i  
- A 2  + - ~  (cos 27rs - 1) - 2 / ry l  , (27) 

dy2 -o21 
- cos 27rs - 02 sin 27rs, = - -  sin 2rrs + 02 cos 27rs, (28) 

2 ds 2 

ol(o)=xl(O)=yl(o)=o, o2(o)=x=(O)=y=(O)=O. (29) 
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Eq. (6) is no t  so straight-forward. For  instance,  the condi t ion  on  0 is 

0 [ s = l - c  
= 2 7 r ( 1 - c )  + e 0 1 ( 1 - c )  + e202(1- -c )  + . . .  

dO~ 
= 2 7 r ( 1 - e c l  - e2c2) + e 0 1 ( 1 ) -  e2cl ~ (1) + e 2 0 2 ( 1 )  + . . .  

= 27r. (30) 

From (30), the b o u n d a r y  condi t ions  are 

01(1)  = 27rCl, x l ( 1 ) = 0 ,  

dO~ 
02(1)=27rc2  + c l  - ~ s  (1),  

y ~ ( 1 ) = O ,  (31) 

dxl 2 dyl 
x 2 ( 1 ) = c l - ~ s  (1),  y2 (1) = - c  t r r + c l  ~ (1).  (32) 

The solutions,  after some algebra, are 

3 1 01 1 
A1 = ~ ,  cl - 47r ' = - ~  (rrs + s i n  27rs), 

- 1  
x l -  16~2 

- - -  (2 sin 2ns - 4ns cos 2ns - 47rs - sin 47rs), 

1 
Yl - 167r 2 (2 cos 27rs + 47rs sin 2rrs - 1 - cos 41rs), 

(33) 

(34) 

(35) 

3 
A2 47r c2 = 0,  

1 1 
02 = - -  (sin 2rrs + 27rs cos 2us + ~ sin 4ns + us), 

871.2 

1 
[sin3 2rrs - 2 sin 2rrs (us + sin 27rs) 2 ] ,  

x z -  327r 3 

1 

y : -  327r 3 

F rom (24), (25), (33), (36) we f ind 

/3 /3 3 3 

2~ a = - ( 1 - -  7rfJ4 ----7 ÷ 16n2/32 

- - -  [cos 3 2~rs - 1 + 2 cos 2rrs (us + sin 27rs) 2 ].  

2~r +eA1 +e2A2 

1 
c = ~ - ~  + o o r ~ ) .  

(36) 

(37) 

(38) 

(39) 

+ . . .  ), (40) 

(41) 

For the width  and height we need the values of  s at 0 = rr/2 and 7r. For  example,  at 0 = n/2,  the 

inversion of  (21) is ob ta ined  by  the expansion 

1 
s = ~ + e s l  + e2s2 + . . .  (42) 
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and expressing 01, 02 in a Taylor series about 1/4. Then (42) is substituted into (22) f o r x  at 

0 = n/2. The width is 

1 
W = C  + 2X ] n -  

O = -  7"( 
2 

Similarly the height is 

1 1 

h = y  0=n 7r 4n~3 16ff3fl 2 

n - 2  1 
- - -  + -5---7~_ + + . . . .  ( 4 3 )  16rr332 ~rr'ffr 

The normalized volume is 

+ . . . .  (44) 

4. Numerical s o l u t i o n  

1 
V=/3c = -7-  + . . . .  (45) 

4ff  

0.1 

With the advent of  computers,  the present problem is perhaps more easily solved exactly by 

direct numerical integration o f  (3)-(6) than numerically for the unknown constants through 

elliptic functions. The method is to guess a and integrate (3)-(5) as an initial-value problem using 

the Runge-Kutta algorithm. When 0 = 27r, we check whether s = 1 + x. I f  not, a is adjusted, say, 

by Newton's  method.  Convergence is not  a problem here because our analytical solutions, (12) 

/Eq (45 )  

V 

OD5 
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I .J 
O0 0.5 1 

Figure 3. Volume V and tension c~ as a function of pressure/3. 
- -  exact numerical solution, - - -  approximate solutions. 
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for small/3 and (40) for large/3, are extremely good approximates.  The results are shown in Figs. 

3 and 4. We see that  our asymptot ic  solutions, not  only valid for large/3, can often be extended 

down to small /3 as well. This is because the coefficients for higher-order corrections in (40), 

(43), (44) are progressively smaller. As a consequence, our approximate  solutions adequately 

cover the whole range of/3 except  perhaps for the interval 0.2 to 0.4. 

Fig. 5 shows the shapes o f  the membrane cylinder for various/3 using the exact numerical 

solution. 

° s ~ x  ' 

h 

025 

(19) " 41) 
/ /  

0 0.5 1 

P 
Figure 4. Width w, height h, and contact length c as a function of/3. 
- -  exact numerical solution, - - -  approximate solutions. 

YT p = l  

- 0 . 4  - 0 . 2  o 7, 

Figure 5. Cross-sectional shapes for various t3. 

Journal of Engineering Math., Vol. 15 (1981) 81-88 



88 C- Y. Wang and L. T. Watson 

5. Discussion 

The tension in the membrane c~, a design criterion, increases first quadratically and then linearly 

with the increase of  pump pressure/3. Since the volume V already reaches 95% of  its maximum 

at/3 = 0.45, it is perhaps not advisible to try to fill the membrane container completely. In fact, 

the largest change of  slope for V is near/3 = 0.3 where it is almost 90% filled. The work done 

per unit width for pumping is 

work=  f ( P o - P a ) d V ' = p g L  3 foV[3dV.  (46) 

It is proportional to the area between the line/3 = 0 and V(fl) in Fig. 3. The work increases rapidly 

as/3 is increased beyond/3 = 0.3. 

Our results can also be  applied to air-filled flexible tubes immersed in water, e.g. pontoons. 

In that case Fig. 5 should be viewed upside down. 

Does Fig. 5 represent the shapes of  fluid held together by surface tension? The answer is no. 

The angle of  contact for our problem, 0(0) -- 0 °, does not correspond to any known fluid-solid 

system. The lowest angle attainable is mercury on glass for which 0(0) = 40 °. 

The present work is analogous to a problem in the theory o f  elastica (see e.g. [3]). Suppose a 

segment of  a thin, circular elastic loop is clamped flat, then the resulting shape is shown in Fig.5. 

The corresponding parameters are 

E /  M 
a - /3 = - - -  (47) 

FL 2 ' FL 

where L is the perimeter length of  the loop, E1 is the flexural rigidity, M is the moment and F is 

the force at the origin. 
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